Convergence rate of Bayesian tensor estimator and its minimax optimality

نویسنده

  • Taiji Suzuki
چکیده

We investigate the statistical convergence rate of a Bayesian low-rank tensor estimator, and derive the minimax optimal rate for learning a lowrank tensor. Our problem setting is the regression problem where the regression coefficient forms a tensor structure. This problem setting occurs in many practical applications, such as collaborative filtering, multi-task learning, and spatiotemporal data analysis. The convergence rate of the Bayes tensor estimator is analyzed in terms of both in-sample and out-of-sample predictive accuracies. It is shown that a fast learning rate is achieved without any strong convexity of the observation. Moreover, we show that the method has adaptivity to the unknown rank of the true tensor, that is, the near optimal rate depending on the true rank is achieved even if it is not known a priori. Finally, we show the minimax optimal learning rate for the tensor estimation problem, and thus show that the derived bound of the Bayes estimator is tight and actually near minimax optimal.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Minimax Optimality of Block Thresholded Wavelets Estimators for ?-Mixing Process

We propose a wavelet based regression function estimator for the estimation of the regression function for a sequence of ?-missing random variables with a common one-dimensional probability density function. Some asymptotic properties of the proposed estimator based on block thresholding are investigated. It is found that the estimators achieve optimal minimax convergence rates over large class...

متن کامل

Gaussian process nonparametric tensor estimator and its minimax optimality

We investigate the statistical efficiency of a nonparametric Gaussian process method for a nonlinear tensor estimation problem. Low-rank tensor estimation has been used as a method to learn higher order relations among several data sources in a wide range of applications, such as multitask learning, recommendation systems, and spatiotemporal analysis. We consider a general setting where a commo...

متن کامل

Minimax Optimal Alternating Minimization for Kernel Nonparametric Tensor Learning

We investigate the statistical performance and computational efficiency of the alternating minimization procedure for nonparametric tensor learning. Tensor modeling has been widely used for capturing the higher order relations between multimodal data sources. In addition to a linear model, a nonlinear tensor model has been received much attention recently because of its high flexibility. We con...

متن کامل

Stability and Minimax Optimality of Tangential Delaunay Complexes for Manifold Reconstruction

In this paper we consider the problem of optimality in manifold reconstruction. A random sample Xn = {X1, . . . , Xn} ⊂ R composed of points lying on a d-dimensional submanifold M , with or without outliers drawn in the ambient space, is observed. Based on the Tangential Delaunay Complex [4], we construct an estimator M̂ that is ambient isotopic and Hausdorffclose to M with high probability. The...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015